3.542 \(\int \sqrt{d+c d x} \sqrt{e-c e x} (a+b \sin ^{-1}(c x))^2 \, dx\)

Optimal. Leaf size=222 \[ \frac{\sqrt{c d x+d} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}-\frac{b c x^2 \sqrt{c d x+d} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{c d x+d} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{b^2 \sqrt{c d x+d} \sqrt{e-c e x} \sin ^{-1}(c x)}{4 c \sqrt{1-c^2 x^2}}-\frac{1}{4} b^2 x \sqrt{c d x+d} \sqrt{e-c e x} \]

[Out]

-(b^2*x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])/4 + (b^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x])/(4*c*Sqrt[1 - c
^2*x^2]) - (b*c*x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x]))/(2*Sqrt[1 - c^2*x^2]) + (x*Sqrt[d + c
*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2)/2 + (Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^3)/(6*b*
c*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.298865, antiderivative size = 222, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {4673, 4647, 4641, 4627, 321, 216} \[ \frac{\sqrt{c d x+d} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}-\frac{b c x^2 \sqrt{c d x+d} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{c d x+d} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{b^2 \sqrt{c d x+d} \sqrt{e-c e x} \sin ^{-1}(c x)}{4 c \sqrt{1-c^2 x^2}}-\frac{1}{4} b^2 x \sqrt{c d x+d} \sqrt{e-c e x} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2,x]

[Out]

-(b^2*x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])/4 + (b^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x])/(4*c*Sqrt[1 - c
^2*x^2]) - (b*c*x^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x]))/(2*Sqrt[1 - c^2*x^2]) + (x*Sqrt[d + c
*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2)/2 + (Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^3)/(6*b*
c*Sqrt[1 - c^2*x^2])

Rule 4673

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> D
ist[((d + e*x)^q*(f + g*x)^q)/(1 - c^2*x^2)^q, Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q]
 && GeQ[p - q, 0]

Rule 4647

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*(
a + b*ArcSin[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 - c^2*x^2]), Int[(a + b*ArcSin[c*x])^n/Sqrt[1 -
c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 - c^2*x^2]), Int[x*(a + b*ArcSin[c*x])^(n - 1), x],
x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4627

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcSi
n[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1))/Sqrt[1
- c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx &=\frac{\left (\sqrt{d+c d x} \sqrt{e-c e x}\right ) \int \sqrt{1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx}{\sqrt{1-c^2 x^2}}\\ &=\frac{1}{2} x \sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\left (\sqrt{d+c d x} \sqrt{e-c e x}\right ) \int \frac{\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt{1-c^2 x^2}} \, dx}{2 \sqrt{1-c^2 x^2}}-\frac{\left (b c \sqrt{d+c d x} \sqrt{e-c e x}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt{1-c^2 x^2}}\\ &=-\frac{b c x^2 \sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}+\frac{\left (b^2 c^2 \sqrt{d+c d x} \sqrt{e-c e x}\right ) \int \frac{x^2}{\sqrt{1-c^2 x^2}} \, dx}{2 \sqrt{1-c^2 x^2}}\\ &=-\frac{1}{4} b^2 x \sqrt{d+c d x} \sqrt{e-c e x}-\frac{b c x^2 \sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}+\frac{\left (b^2 \sqrt{d+c d x} \sqrt{e-c e x}\right ) \int \frac{1}{\sqrt{1-c^2 x^2}} \, dx}{4 \sqrt{1-c^2 x^2}}\\ &=-\frac{1}{4} b^2 x \sqrt{d+c d x} \sqrt{e-c e x}+\frac{b^2 \sqrt{d+c d x} \sqrt{e-c e x} \sin ^{-1}(c x)}{4 c \sqrt{1-c^2 x^2}}-\frac{b c x^2 \sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt{1-c^2 x^2}}+\frac{1}{2} x \sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^2+\frac{\sqrt{d+c d x} \sqrt{e-c e x} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt{1-c^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 1.01271, size = 288, normalized size = 1.3 \[ \frac{3 \sqrt{c d x+d} \sqrt{e-c e x} \left (4 a^2 c x \sqrt{1-c^2 x^2}+2 a b \cos \left (2 \sin ^{-1}(c x)\right )-b^2 \sin \left (2 \sin ^{-1}(c x)\right )\right )-12 a^2 \sqrt{d} \sqrt{e} \sqrt{1-c^2 x^2} \tan ^{-1}\left (\frac{c x \sqrt{c d x+d} \sqrt{e-c e x}}{\sqrt{d} \sqrt{e} \left (c^2 x^2-1\right )}\right )+6 b \sqrt{c d x+d} \sqrt{e-c e x} \sin ^{-1}(c x)^2 \left (2 a+b \sin \left (2 \sin ^{-1}(c x)\right )\right )+6 b \sqrt{c d x+d} \sqrt{e-c e x} \sin ^{-1}(c x) \left (2 a \sin \left (2 \sin ^{-1}(c x)\right )+b \cos \left (2 \sin ^{-1}(c x)\right )\right )+4 b^2 \sqrt{c d x+d} \sqrt{e-c e x} \sin ^{-1}(c x)^3}{24 c \sqrt{1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(a + b*ArcSin[c*x])^2,x]

[Out]

(4*b^2*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x]^3 - 12*a^2*Sqrt[d]*Sqrt[e]*Sqrt[1 - c^2*x^2]*ArcTan[(c*x*Sq
rt[d + c*d*x]*Sqrt[e - c*e*x])/(Sqrt[d]*Sqrt[e]*(-1 + c^2*x^2))] + 6*b*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[
c*x]*(b*Cos[2*ArcSin[c*x]] + 2*a*Sin[2*ArcSin[c*x]]) + 6*b*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*ArcSin[c*x]^2*(2*a
+ b*Sin[2*ArcSin[c*x]]) + 3*Sqrt[d + c*d*x]*Sqrt[e - c*e*x]*(4*a^2*c*x*Sqrt[1 - c^2*x^2] + 2*a*b*Cos[2*ArcSin[
c*x]] - b^2*Sin[2*ArcSin[c*x]]))/(24*c*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.266, size = 0, normalized size = 0. \begin{align*} \int \sqrt{cdx+d}\sqrt{-cex+e} \left ( a+b\arcsin \left ( cx \right ) \right ) ^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x)

[Out]

int((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}\right )} \sqrt{c d x + d} \sqrt{-c e x + e}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral((b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)*sqrt(c*d*x + d)*sqrt(-c*e*x + e), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{d \left (c x + 1\right )} \sqrt{- e \left (c x - 1\right )} \left (a + b \operatorname{asin}{\left (c x \right )}\right )^{2}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)**(1/2)*(-c*e*x+e)**(1/2)*(a+b*asin(c*x))**2,x)

[Out]

Integral(sqrt(d*(c*x + 1))*sqrt(-e*(c*x - 1))*(a + b*asin(c*x))**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c d x + d} \sqrt{-c e x + e}{\left (b \arcsin \left (c x\right ) + a\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(1/2)*(-c*e*x+e)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(c*d*x + d)*sqrt(-c*e*x + e)*(b*arcsin(c*x) + a)^2, x)